184 research outputs found

    On the threshold-width of graphs

    Full text link
    The GG-width of a class of graphs GG is defined as follows. A graph G has GG-width k if there are k independent sets N1,...,Nk in G such that G can be embedded into a graph H in GG such that for every edge e in H which is not an edge in G, there exists an i such that both endpoints of e are in Ni. For the class TH of threshold graphs we show that TH-width is NP-complete and we present fixed-parameter algorithms. We also show that for each k, graphs of TH-width at most k are characterized by a finite collection of forbidden induced subgraphs

    Fast algorithms for the Tron game on trees

    Get PDF
    Abstract TR.ON is the following game which can be played on any graph: Two players choose alternately a node of the graph subject to the requirement that each player must choose a node which is adjacent to his previously chosen node and such that every node is chosen only once. In this paper O(n) and O(ny'n) algorithms are given for deciding whether there is a winning strategy for the first player when TR.oN is played on a given tree, for the variants with and without specified starting nodes, respectively. The problem is shown to be both NP-hard and co-NP-hard for connected undirected graphs in general

    On the stable degree of graphs

    No full text
    We define the stable degree s(G) of a graph G by s(G)∈=∈ min max d (v), where the minimum is taken over all maximal independent sets U of G. For this new parameter we prove the following. Deciding whether a graph has stable degree at most k is NP-complete for every fixed k∈≥∈3; and the stable degree is hard to approximate. For asteroidal triple-free graphs and graphs of bounded asteroidal number the stable degree can be computed in polynomial time. For graphs in these classes the treewidth is bounded from below and above in terms of the stable degree

    Efficient FPT algorithms for (strict) compatibility of unrooted phylogenetic trees

    Full text link
    In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species XX; these relationships are often depicted via a phylogenetic tree -- a tree having its leaves univocally labeled by elements of XX and without degree-2 nodes -- called the "species tree". One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g. DNA sequences originating from some species in XX), and then constructing a single phylogenetic tree maximizing the "concordance" with the input trees. The so-obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping -- but not identical -- sets of labels, is called "supertree". In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of "containing as a minor" and "containing as a topological minor" in the graph community. Both problems are known to be fixed-parameter tractable in the number of input trees kk, by using their expressibility in Monadic Second Order Logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on kk of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time 2O(k2)n2^{O(k^2)} \cdot n, where nn is the total size of the input.Comment: 18 pages, 1 figur

    Treewidth and minimum fill-in on d-trapezoid graphs

    Get PDF
    We show that the minimum fill-in and the minimum interval graph completion of a d-trapezoid graph can be computed in time On d . We also show that the treewidth and the pathwidth of a d-trapezoid graph can be computed by an On twG d,1 time algorithm. For both algorithms, d is supposed to be a fixed positive integer and it is required that a suitable intersection model of the given d-trapezoid graph is part of the input. As a consequence, the minimum fill-in and the minimum interval graph completion as well as the treewidth and the pathwidth of a given trapezoid graph (or permutation graph) can be computed in time On 2 , even if no intersection model is part of the input

    Line-distortion, Bandwidth and Path-length of a graph

    Full text link
    We investigate the minimum line-distortion and the minimum bandwidth problems on unweighted graphs and their relations with the minimum length of a Robertson-Seymour's path-decomposition. The length of a path-decomposition of a graph is the largest diameter of a bag in the decomposition. The path-length of a graph is the minimum length over all its path-decompositions. In particular, we show: - if a graph GG can be embedded into the line with distortion kk, then GG admits a Robertson-Seymour's path-decomposition with bags of diameter at most kk in GG; - for every class of graphs with path-length bounded by a constant, there exist an efficient constant-factor approximation algorithm for the minimum line-distortion problem and an efficient constant-factor approximation algorithm for the minimum bandwidth problem; - there is an efficient 2-approximation algorithm for computing the path-length of an arbitrary graph; - AT-free graphs and some intersection families of graphs have path-length at most 2; - for AT-free graphs, there exist a linear time 8-approximation algorithm for the minimum line-distortion problem and a linear time 4-approximation algorithm for the minimum bandwidth problem

    An FPT 2-Approximation for Tree-Cut Decomposition

    Full text link
    The tree-cut width of a graph is a graph parameter defined by Wollan [J. Comb. Theory, Ser. B, 110:47-66, 2015] with the help of tree-cut decompositions. In certain cases, tree-cut width appears to be more adequate than treewidth as an invariant that, when bounded, can accelerate the resolution of intractable problems. While designing algorithms for problems with bounded tree-cut width, it is important to have a parametrically tractable way to compute the exact value of this parameter or, at least, some constant approximation of it. In this paper we give a parameterized 2-approximation algorithm for the computation of tree-cut width; for an input nn-vertex graph GG and an integer ww, our algorithm either confirms that the tree-cut width of GG is more than ww or returns a tree-cut decomposition of GG certifying that its tree-cut width is at most 2w2w, in time 2O(w2logw)n22^{O(w^2\log w)} \cdot n^2. Prior to this work, no constructive parameterized algorithms, even approximated ones, existed for computing the tree-cut width of a graph. As a consequence of the Graph Minors series by Robertson and Seymour, only the existence of a decision algorithm was known.Comment: 17 pages, 3 figure
    corecore